Distance Measures in Genetic Algorithms
نویسندگان
چکیده
Metric is one of the fundamental tools for understanding space. It gives induced topology to the space and it is the most basic way to provide the space with topology. Different metrics make different topologies. The shape of the space largely depends on its metric. In understanding genetic algorithms, metric is also basic and important. In genetic algorithms, a good distance measure not only helps to analyze their search spaces, but can also improve their search capability. Hamming distance has been popular in most researches for genetic algorithms that deal with discrete spaces. It has also been widely adopted in studies about the analysis of the problem space. In this paper, we propose more reasonable distance measures depending on situations in the process of genetic algorithms and show that they are actually metrics. We propose three distance measures: one for the population-based search, another for the solution space based on K-ary encoding, and the third as an approximate measure of performance improvement of linkage-based genetic algorithms. Since the genetic algorithm is a population-based search, the distance measure between populations is useful for understanding the behavior of genetic algorithms. We propose an intuitive and reasonable metric.
منابع مشابه
A knowledge-based NSGA-II approach for scheduling in virtual manufacturing cells
This paper considers the job scheduling problem in virtual manufacturing cells (VMCs) with the goal of minimizing two objectives namely, makespan and total travelling distance. To solve this problem two algorithms are proposed: traditional non-dominated sorting genetic algorithm (NSGA-II) and knowledge-based non-dominated sorting genetic algorithm (KBNSGA-II). The difference between these algor...
متن کاملComplete Closest-Target Based Directional FDH Measures of Efficiency in DEA
In this paper, we aim to overcome three major shortcomings of the FDH (Free Disposal Hull) directional distance function through developing two new, named Linear and Fractional CDFDH, complete FDH measures of efficiency. To accomplish this, we integrate the concepts of similarity and FDH directional distance function. We prove that the proposed measures are translation invariant and unit invari...
متن کاملAn Efficient Rank Based Approach for Closest String and Closest Substring
This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use...
متن کاملProfiling the Distance Characteristics of Mutation Operators for Permutation-Based Genetic Algorithms
In this paper, we consider the permutation representation of genetic algorithms, and more generally, local search algorithms. We use a variety of permutation distance measures to profile the behavior of the most commonly used mutation operators for permutation-based genetic algorithms. Our operator profiles are also applicable to other local search algorithms, such as simulated annealing, as th...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کامل